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Abstract This paper addresses the multi-scale modeling

aspects of damage in composite materials. The multiplicity

of the scales of the operating mechanisms is discussed and

clarified by taking examples of damage in a unidirectional

ceramic matrix composite and in a cross ply polymer

matrix composite laminate. Two multi-scale modeling

strategies––the hierarchical and the synergistic––are

reviewed in the context of deformational response. Finally,

the ‘‘big picture’’ as it relates to the cost-effective manu-

facturing of composite structures intended for long-term

performance is outlined and desired future direction in

multi-scale modeling is discussed.

Introduction

Composite materials can be viewed as material systems with

a wide range of possibilities for engineering design. As

engineered materials, composites can be made ‘‘advanced’’,

e.g. by using constituents that have high (advanced) prop-

erties, or by use of fiber architecture to create combinations

and anisotropy of properties not possible in single (mono-

lithic) materials, or both. Composites can also be engineered

by ‘‘enrichment’’, e.g. by adding elements that modify, alter

or impart properties to meet specific needs. Examples of

enrichment range from optical property modification by

mixing curing agents to molecular-level morphological

changes with nano-scale elements (clay particles, nanotubes,

etc.). In all cases, effective engineering necessitates mathe-

matical modeling of mechanisms and the consequent

responses. From the early days of the rule of mixture type

estimates to today’s multi-scale modeling, composite

mechanics has been concerned with continuous refinement

of methods to accomplish this goal. The computational tools

available today have motivated a renewed emphasis on

multi-scale modeling.

This article will focus on the multi-scale modeling

aspects of damage in composites. In order to specify the

scope of the treatment, we shall first define the key terms––

fracture, damage and failure. The context of the treatment

will be structural integrity and durability of composites

under mechanical loading. The role of damage mechanics

in the ‘‘big picture’’ of cost effective manufacturing will be

discussed at the end, where directions for further devel-

opment of modeling for this purpose will be outlined.

Fracture, damage and failure––Definitions

Fracture is conventionally understood to be ‘‘breakage’’ of

material, or at a more fundamental level, breakage

of atomic bonds, which manifests itself in formation of

internal surfaces. Examples of fracture in composites are

fiber fragmentation, cracks in matrix, fiber/matrix deb-

onding and separation of bonded plies (delamination). The

field of fracture mechanics concerns itself with conditions

for enlargement of the surfaces of material separation.

Damage is a collective reference to irreversible changes

brought about by energy dissipating mechanisms, of which

atomic bond breakage is an example. Unless specified

differently, damage is understood to refer to distributed

changes. Examples of damage are multiple fiber-bridged

matrix cracking in a unidirectional composite, multiple
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intralaminar cracking in a laminate, local delamination

distributed in an interlaminar plane, and fiber/matrix inter-

facial slip associated with multiple matrix cracking. The

field of damage mechanics is concerned with conditions for

initiation and progression of distributed changes as well as

consequences of those changes on the response of a material

(and by implication, a structure) to external loading.

Failure is defined as the inability of a given material

system (and consequently, a structure made from it) to

perform its design function. Fracture is one example of a

possible failure, but generally, a material could fracture

(locally) and still perform its design function. On suffering

damage (e.g. in the form of multiple cracking) a composite

material could continue to carry loads, and thereby meet its

load-bearing requirement, but fail to deform in a manner

needed for its other design requirements such as vibration

characteristics and deflection limits.

The multi-scale nature of damage

In a purist view, the first (basic) scale at which dissipative

mechanisms occur is the lowest possible material size-

scale. In reality, however, identifying this scale is limited

by our ability to observe as well as to model and analyze

the mechanisms at the observed scale. The so-called

‘‘micro’’ scale is a reference to the scale at which entities

or features within a material are observable by a certain

type of microscope. Thus, for example, the micro scale can

be a few micrometers, if an electron microscope is used to

observe entities such as cracks or crystalline slip within

grains or at grain boundaries. The scale reduces by an order

of magnitude if one focuses on dislocations observed by a

transmission electron microscope. Today, the use of nano-

scale elements (particles, fibers, tubes, etc.) has moved the

basic scale further down where it is necessary to revisit the

fundamentals of continuum mechanics and to develop

modeling tools that can bridge the discrete-level descrip-

tions (quantum mechanics) to continuum type (smeared-

out) descriptions.

In an engineering approach, the purpose at hand should

guide the choice of the basic scale. Thus if the overall

(effective) characteristics of inelastic response are of

interest, it would suffice to incorporate the energy dissi-

pating mechanisms in a model, directly or indirectly, in an

appropriate average sense, while if, for instance, a partic-

ular material failure characteristic is aimed, the analysis

may need to be conducted at the local physical scale of the

relevant details of the mechanisms. On the other hand, if

the purpose is to design a material, i.e. to engineer its

response or to provide it with certain functionalities, then it

would be necessary to address scales where the material

(micro) structure can be modified, manipulated or intruded.

In composite materials, the scales of inhomogeneities

(reinforcements, additives, second phases, etc.) embedded

in the baseline material (matrix) determine the character-

istic scales of operation of the mechanisms of energy

dissipation. Although energy dissipation may also be

occurring at other (smaller) scales, e.g. the scale of the

matrix material’s microstructure, the dissipative mecha-

nisms associated with the inhomogeneities has usually an

overriding influence on the composite behavior. For

instance in short-fiber polymer matrix composites, the size

of fiber diameter manifests the scale at which matrix cracks

form, although energy dissipation may also occur at the

matrix polymer’s molecular scale. The complexity intro-

duced by inhomogeneities in composite damage is in the

form of multiple scales of dissipative mechanisms

depending on the geometrical features of the inhomoge-

neities. For the case of short fibers, for instance, the matrix

cracking from the fiber ends and the fiber/matrix debonding

occur at two length scales, determined by the fiber diameter

and fiber length, respectively. For composite laminates, the

thickness of identically oriented plies sets the scale for

development of intralaminar cracking, while for formation

of these cracks the appropriate scale is given by the fiber

diameter. Thus in modeling of a composite material’s

behavior one faces a complex situation concerning the

length scales, and taking a hierarchical approach may not

be the most efficient way, as we shall discuss later.

In the following the multi-scale nature of damage in

composite materials will be illustrated and elaborated

further by examining two particular cases.

Unidirectional ceramic fiber reinforced ceramic matrix

composites (CMCs)

The first case for consideration is a unidirectionally

reinforced CMC subjected to uniform, monotonically

increasing tension in the fiber direction. The set of four

micrographs from Sørensen and Talreja [7] shown in Fig. 1

illustrate the progressive matrix cracking in a SiC fiber

reinforced glass-ceramic matrix. The axial strains at which

these pictures are taken by a surface replication technique

are indicated in each picture. The first picture at 0.15%

strain shows an early stage of the matrix cracks lying

normal to the (horizontal) fiber axis and not fully spanning

the specimen cross-section. Progressively at higher strain

levels the cracks are fully fiber-bridged, increasing in

number and reaching a saturation density (maximum

number of cracks per unit axial length). A schematic

overview of the stages of damage corresponding to the

stress-strain response is depicted in Fig. 2. In the first stage

of no cracking the response is linearly elastic, followed by

Stage II where the multiple matrix cracking renders the

stress-strain response inelastic. The unloading moduli
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(axial Young’s modulus and Poisson’s ratio) show steady

degradation with increasing crack number density in Stage

II, which initiates at 0.13% strain and extends to 0.5%

strain. Beyond this strain Stage III occurs where the fric-

tional sliding at the fiber/matrix interface becomes signif-

icant. At a later part of this stage, beyond 0.7% strain,

progressive fiber breakage takes place leading to localiza-

tion of damage and subsequent failure.

The Stage II progressive cracking can be treated with

damage mechanics, a field that concerns itself with char-

acterization of damage, evolution of damage and relating

damage to material response. Talreja [9] presented char-

acterization of damage modes in ceramic matrix compos-

ites (matrix cracking, fiber/matrix debonding and fiber/

matrix sliding) and derived for each mode expressions for

the changes in moduli as functions of damage. Sørensen

and Talreja [7] used that modeling approach for the Stage

II matrix cracking described above. In the following we

shall use this example to illustrate the multi-scale nature of

damage and discuss how the scales can be incorporated in a

damage mechanics framework.

Figure 3 shows schematically a fiber-bridged matrix

crack typical of the Stage II damage in CMCs described

above. This type of crack can be viewed as having three

components, each causing dissipation of energy by a sep-

arate mechanism. One component is the crack surface

formed by breakage of atomic bonds in the matrix. The

second component consists of the fiber/matrix disbonds,

which occur by breakage of atomic bonds at the interface.

Finally, the third energy-dissipating component is the

frictional sliding at the fiber/matrix interface that follows

debonding. Each component has a characteristic geometry

and an associated ‘‘influence’’ to signify its presence. In

Talreja [9] the three mechanisms––matrix cracking, deb-

onding and sliding––were treated as individual damage

modes and were characterized by symmetric second order

tensors, incorporating appropriate measures of influence

Fig. 1 Surface micrographs of

a SiC fiber reinforced glass-

ceramic composite at different

axial strains. Tensile loading

was in the (horizontal) fiber

direction. From Sørensen and

Talreja [7]

εL

σ

Stage I Stage II Stage III

εT

Fig. 2 A schematic overview of the three stages of stress–strain

response in a SiC fiber reinforced glass-ceramic composite. Based on

Sørensen and Talreja [7]

sliding

debonding

Fig. 3 Schematic illustration of a fiber-bridged matrix crack

123

6802 J Mater Sci (2006) 41:6800–6812



for each mode. We shall discuss those damage modes here

with a view to bringing out the multi-scale features.

Matrix cracking

A matrix crack can be viewed as a pair of internal surfaces

in a composite that are able to perturb the stress state in a

region around the surfaces by conducting displacement

(i.e. separation of surfaces) from the undeformed configu-

ration. The surface separation per unit of applied external

load depends on the size and shape of the surfaces as well

as on the constraint, if any, imposed by the surroundings.

For a matrix crack in a unidirectional CMC the constraint

comes from the bridging fibers as well as from the stiff-

ening effect of fibers in the matrix surrounding the crack.

As described in Talreja [9] a single crack can be charac-

terized by a ‘‘damage entity tensor’’, given by

dij ¼
Z

S

ainjdS ð1Þ

where ai are components of an ‘‘influence vector’’ placed

on a crack of surface area S at a point with outward unit

normal vector of components nj. The influence vector can

be resolved along the crack surface normal and tangential

directions. For the type of crack considered here it is rea-

sonable to assume that only the normal (crack opening)

displacement matters, allowing ai to be expressed as

ai ¼ ani ð2Þ

where the quantity a now represents a measure of the crack

influence. From dimensional analysis, with dij taken to be

dimensionless, a has dimensions of length. Drawing upon

fracture mechanics this length is in proportion to the crack

length. For a fiber-bridged matrix crack the crack length l

can be expressed in multiples of the average inter-fiber

spacing. Thus,

l ¼ kd
1� ffiffiffiffiffi

vf
p
ffiffiffiffiffi
vf
p ð3Þ

where k is a constant, d is fiber diameter and vf is the fiber

volume fraction. The expression in Eq. (3) is based on a

hexagonal fiber arrangement. Similar expression will result

from other assumption of fiber distribution in the cross-

section. We can now infer that the microstructural length

scale for matrix microcracking is the fiber diameter. Note

that for an irregularly shaped crack surface the inter-fiber

spacing, and therefore the fiber diameter, will still be the

length scale.

The consequence of the presence of a matrix crack is

generally in changing the composite’s deformational

response, which is defined and measured at a larger length

scale, e.g. the characteristic length of a volume containing

a representative sample of the cracks. This volume is called

a representative volume element (RVE). For the Stage II

stress–strain response [7] used the model proposed in

Talreja [9]. Accordingly, assuming the influence vector

magnitude a to be proportional to the crack length,

a ¼ al ð4Þ

where a is a constant representing the constraint to the

crack surface displacement. This constant equals zero when

the constraint allows no crack separation, while it increases

as the constraint reduces.

From Eqs. (1), (2) and (4), the damage entity tensor for

matrix cracking is

dmc
ij ¼ al2tninj ð5Þ

where t is the specimen thickness (or the through-thickness

characteristic dimension of the crack).

The macro-level deformational response is derived from

a strain energy density function that depends on the strain

and damage states. The matrix-cracking damage state is

characterized by [9],

Dmc
ij ¼

1

V

X
dmc

ij ð6Þ

where V is the RVE volume of a representative volume

element (RVE) over which the summation is conducted.

Substituting Eq. (5) in Eq. (6), one obtains

Dmc ¼ agA\fl[ ð7Þ

where Dmc ¼ Dmc
11 , the only surviving component of the

damage mode tensor, f is the fraction of RVE width

spanned by a crack and g is the crack number density, i.e.

the number of cracks per unit volume, and A is the cross-

sectional area. The quantity within the brackets < > is

averaged over the RVE volume.

The matrix crack length, Eq. (3), thus appears in the

damage descriptor, Eq. (7). Also, as shown in [9], the crack

length also governs the elastic constants at a given crack

density g. For instance, the axial Young’s modulus can be

written as

E11 ¼ E0
11ð1� cglÞ ð8Þ

where c is a constant and the superscript 0 is for the initial

value.

In characterizing matrix cracks as a damage mode, Eq.

(7), no specific account is made of the associated fiber/

matrix debonding and sliding mechanisms. These can be
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considered separately and then accounted for by their

interactions with the matrix cracks [9]. Discussions of these

mechanisms follow.

Interfacial debonding

The fiber/matrix interface can debond due to several

causes. Essentially, a stress normal to fibers or a shear

stress along fibers, or a combination of the two, must exist

for the bond to fail. These stresses can be generated by a

fiber break or brought into play by an approaching matrix

crack. Alternatively, a preexisting flaw at the fiber surface

or an imperfect fiber, or its misalignment, can produce

those stresses. If debonds are produced without interaction

with matrix cracks, then they can be characterized in a

manner similar to matrix cracks. A characterization of such

distributed debonding is given in Talreja [9] based on

certain simplifying assumptions. The only surviving dam-

age mode tensor component for this case is D22 and its

form is the same as that of Dmc in Eq. (7). Thus the debond

length and the debond number density enter into the

damage mode description. The debond length will depend

on the characteristic flaw length, which in turn depends on

the manufacturing process. Unless the ability of the man-

ufacturing process to produce interfacial flaws somehow

depends on the composite microstructure, no microstruc-

tural length scale can be identified for the debonding

mechanism.

For the case of a matrix crack initiating debonding and

then merging with the debond crack, further driving force

to the advancement of the debond crack comes from the

opening displacement of the matrix crack. The damage

configuration of interest then is not the debond crack by

itself but a combined matrix-debond crack. The latter can

be viewed as a fiber-bridged matrix crack, discussed

above, with the constraint to its surface displacement

now modified by the presence of debonding. Then the

constant a in Eqs. (4), (5) and (7) may be changed to

another value, resulting in a change of the constant c in

Eq. (8).

Thus for debonding that occurs in conjunction with

matrix cracking the determining length associated with the

damage mode is still the matrix crack length l, although

with a modified influence. This length can still be

expressed by Eq. (3), giving the fiber diameter as the

microstructural length scale.

Specific treatments of debonding by itself and of

debonding in conjunction with matrix cracking are given in

Talreja [9]. Based on that work the axial modulus for the

latter case can be modified from Eq. (8) to be

E11 ¼ E0
11ð1� c0glÞ ð9Þ

where

c0 ¼ cþ kldl ð10Þ

where dl is the ratio of the debond length to the crack length

and kl is a constant. Here a fixed ratio of the number of

debonds per unit of matrix crack length has been assumed.

From Eqs. (9) and (10) it can be seen that the debond

length does not enter into the RVE response directly but via

its ratio to the crack length, suggesting that the governing

length for this response is the crack length.

Interfacial sliding

Interfacial sliding occurs when fibers and matrix remain in

contact after debonding of the interface and undergo

unequal displacements. Talreja [9] defined a measure of the

slip at the interface as the area swept off by the relative

displacement of one constituent over the other and

expressed this measure in terms of a slippage vector. A

slippage tensor was then constructed as a dyadic product of

the slippage vector with itself to account for the insensi-

tivity of the material response to the direction of slip. As in

the case of debonding discussed above, when sliding

occurs in conjunction with matrix cracking, the slip dam-

age tensor, which represents this damage mode averaged

over the RVE, turns out to depend on the average matrix

crack length. In fact it depends explicitly on the average

crack opening displacement, which in turn depends on the

average crack length. The only surviving component of the

slip damage tensor can be written as [9]

Dsl ¼ p2d4g2

64v2
f

\c2
d[ ð11Þ

where d is the fiber diameter, vf is the fiber volume fraction

and cd is the crack opening displacement and the quantity

within the brackets < > is averaged over the RVE volume.

Assuming the crack opening displacement to be pro-

portional to the crack length we may rewrite Eq. (11) as

Dsl ¼ ng2\d4l2[ ð12Þ

where n is a constant depending on the fiber volume

fraction and fiber stiffness. The fiber diameter is placed

within the brackets to allow for its variation. Equation (12)

indicates that this damage mode depends directly and

strongly on the fiber diameter in addition to depending on

the matrix crack length, which in turn is expressible in

terms of the fiber diameter, as in Eq. (3). Thus the

microstructural length scale also in this case is the fiber

diameter. Note that the fiber length over which sliding
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occurs is not a characteristic dimension of the mechanism

when it occurs in conjunction with matrix cracking.

Ply cracking in laminates

Figure 4 shows an X-ray radiograph of a carbon-epoxy

cross-ply laminate after being subjected to tension-tension

cycling. In this two-dimensional view the horizontal lines

are images of cracks in the 90-plies, while the vertical lines

indicate cracks (also called axial splits) that lie in the

0-plies [3]. The shaded areas are sites of interlaminar

cracks (delaminations), which are depicted in Fig. 5. For

the sake of our discussion on length scales of damage we

shall primarily focus on ply cracking.

Figure 6 illustrates multiple matrix cracking in a ply of

an arbitrary orientation h with respect to the 90-direction.

The cracks are shown at a mutual spacing s, which repre-

sents the average crack spacing in a RVE. Using a second

order tensor characterization for this mode of damage [8]

gives

Dpc
ij ¼

jt2
c

st cos h
ninj ð13Þ

where the superscript pc stands for ply cracking, j is a ply

constraint parameter, tc is the thickness of the cracked ply

and t is the laminate thickness. The components ni of the

unit vector normal on a crack surface are given by

ni ¼ ðcos h; sin h; 0Þ ð14Þ

where h as shown in Fig. 6 is the crack inclination.

The laminate stiffness matrix in the presence of a fixed

state of ply cracking is given by [8]

Cpq ¼ C0
pq � CD

pq ð15Þ

where the indices p and q take values from 1 to 6 in

accordance with the Voigt notation. The superscript 0 on
Fig. 4 An X-ray radiograph showing transverse cracks, axial cracks

and delaminations in a cross ply laminate after fatigue [3]

Fig. 5 A schematic illustration of the cracks and delaminations seen

in the X-ray radiograph, Fig. 4

Fig. 6 Illustration of multiple cracking in a general off-axis ply of a

laminate
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the stiffness matrix indicates initial value while D indicates

the contribution due to damage.

The stiffness matrix reduction due to damage can be

expressed in a first approximation as

CD
pq ¼

j0

st
t2
c ð16Þ

where j¢ is a modified ply constraint parameter, which

depends on the ply constraint, the crack orientation and ply

properties.

The length scale variable entering the damage descrip-

tor, Eq. (13), and consequently, the elastic response

change, Eq. (16), is the crack dimension, which for fully

developed ply cracks, as assumed here, is the ply thickness

tc. The other crack dimension along the fiber axis in the ply

extends as far as the imposed stress acts and is therefore not

the characteristic length scale of the cracking mechanism.

Expressed differently, the crack surface displacement,

which is the cause of stress perturbations and thereby the

elastic response changes, depends on the crack dimension

through the ply thickness.

Although the ply cracks are assumed for simplicity to be

sharp-tipped, as illustrated in Fig. 6, in reality they must

get blunted by merging with the local delamination, i.e. the

separation of plies at the interface, caused by the intense

stress field carried by the approaching ply crack fronts. The

extent of the delamination cracks along the ply interfaces

must depend on the interfacial bond strength as well as on

the ply crack length tc. In fact this situation is analogous to

the fiber/matrix debonding in conjunction with matrix

cracking in unidirectional CMCs, discussed in the section

‘‘Interfacial Debonding’’ above. Drawing upon that anal-

ogy we deduce that the delamination length enters the

analysis not directly but via its ratio to the ply crack length

tc. Thus, once again the relevant length scale variable is the

total cracking ply thickness tc.

When cracking occurs in more than one ply orientation,

multiple length scales result with each length scale variable

equaling to the combined thickness of the set of consecu-

tive cracking plies of the corresponding orientation. Also,

the delamination associated with each ply cracking con-

tributes to the effect on the elastic response via the ratio of

the associated delamination length to the ply crack length.

Figure 7 illustrates the ply (matrix) cracking and delami-

nation in an angle ply laminate.

Finally, let us return to the delamination mode observed

in fatigue of cross ply laminates depicted in Figs. 4 and 5.

As illustrated in Fig. 5 this delamination occurs locally at

the intersection of cracks in the two orthogonal orientations

in adjacent plies. The cause of this delamination and the

effect of its presence have not been adequately analyzed.

Therefore, any inference regarding its characteristic length

scale is speculative at present. It appears, however, that the

growth of the delamination is mainly along the two

orthogonal ply crack directions, suggesting thereby two

length scales. These length scales may be described as the

two principal directions of an ellipse, which may be taken

to approximate the delamination geometry.

Multi-scale modeling of damage for elastic response

Damage entity size and microstructural length scales

In the Section ‘‘The Multi-scale Nature of Damage’’ we

have examined the governing dimensions of the damage

entities from the viewpoint of elastic response in the

presence of damage. We have looked at two specific cases

of damage in unidirectional CMCs and in PMC laminates.

The framework within which we have analyzed the issue of

characteristic lengths is the continuum damage mechanics

using characterization of damage with second order ten-

sors. This particular representation of damage, in the form

used here, provides a consistent characterization of the

basic damage entity involved in each case, e.g., a matrix

crack in a CMC and a ply crack in a PMC laminate. The

crux of the characterization is the ‘‘influence’’ vector,

which provides a relevant measure of the action induced by

the presence of the damage entity. By expressing the

magnitude of this vector in terms of the characteristic and

governing dimension of the damage entity the ‘‘essence’’

of the damage entity is carried into the damage entity

tensor. This dimension, when properly identified and

related to the microstructural entities, provides the length

scale associated with the damage mechanism considered.

The relevance of the length scale to determining the elastic

response affected by that damage mode becomes clear

when we examine the response measured over the RVE.

For this a damage mode tensor, which acts as an internal

Matrix
crack 

Delamination θ θ

Fig. 7 Illustration of matrix cracks (left) and delamination (right) in

an angle ply laminate
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state variable in a continuum damage framework, is

considered. We have examined the damage mode tensor in

a simple form, such as that in Eq. (6), which is the volume

average of the damage entity tensor over the RVE. This

does not account for the damage entity distribution and can

therefore be used only for the RVE-averaged, i.e. the meso-

scale, response, and not for describing damage evolution.

Thus, we have examined the length scales of damage

within the context of the elastic response.

The next question to address is: What is the signifi-

cance of the length scales of damage? The basic concept

behind length scales appears to be the intuitive idea that

effects seen at a given observation ‘‘window’’ (e.g. RVE

size) must be determined by events occurring at dimen-

sions smaller than the window size. Implicit is the

assumption that those events are associated with certain

discrete entities such as grains in a polycrystalline mate-

rial, and that the action of those entities and interactions

between them when averaged over the window size pro-

vides the ‘‘response’’ variables applicable at that scale.

Carrying this logic one step ‘‘behind’’ would suggest that

the response at the scale of the discrete entities in a RVE

could be given by the sub-entities lying within those

entities. Thus, if a grain is viewed as an entity, then the

dislocations within the grain could be the sub-entities.

This move to smaller and smaller size-scales could in

principle have no end other than the limit set by the tools

of observation and analysis available at a given time. In

engineering science, in contrast to ‘‘pure’’ sciences, one

takes a pragmatic approach driven by the application or

need at hand. From this point of view, one must consider

the purpose first and go as far down in scales as needed.

Thus if the purpose is to determine the elastic response

changes induced by damage in a composite material, then

one must go as much down in length scales as necessary

to determine the reversible deformation (or stress) related

effects, but no further.

The next question is whether a hierarchy of length

scales can be identified. What we have illustrated by the

discussion of the two cases of composites with damage is

that a simple hierarchy of length scales does not exist.

Instead, a complex damage mode may involve more than

one governing length, e.g., the matrix-crack length and

the interfacial sliding length for a fiber-bridged crack.

Also, multiple damage modes may operate simulta-

neously, and interactively, leading to multiple length

scales, e.g., in the case of multiple off-axis plies in a

laminate. These considerations suggest that an alternative

is needed to the strategy of starting at the smallest length

scale and working up the scale hierarchy. Talreja [10]

proposed one such strategy, the so-called ‘‘synergistic’’

damage mechanics. The following discussion will address

the two strategies.

Hierarchical vs. Synergistic multi-scale approach

It would be fair to say at the outset that the hierarchical

multi-scale approach is intuitively logical. For a complex

composite architecture, which is quite often the case in

practical applications, one can think of starting with the

smallest basic unit––a discrete fiber embedded in matrix––

and proceed to the level of a representative unit of col-

lective fiber arrangement. The basic unit can be analyzed as

a piecewise homogeneous continuum, with two regions, if

fiber and matrix are considered, or three, if an interfacial

layer is added. The result (stress, strain, temperature, etc.)

can then be averaged in some sense over a representative

unit to get a description for the homogenized medium.

Several models for doing this exist, e.g., the Mori-Tanaka

method. These models aim at bridging the two scales––the

scale of the basic unit and the RVE scale. Generally, the

issue of uniqueness remains unresolved in the sense of

representation of the collective fiber effect. There is as yet

no precise and rigorous definition of a representative unit

for a general case, which is the source of lack of unique-

ness. A logical extension of the discrete-to-collective

bridging of the fiber–matrix case to higher scales produces

the hierarchical approach in multi-scale modeling. One can

argue if this approach is efficient, in spite of its logic.

Historically, the hierarchical approach has not preceded

other approaches. A structural analyst has worked with

macro-level descriptions of material behavior, e.g., the

classical laminate plate theory, and has looked for micro-

level information as needed. A materials developer, on the

other hand, has focused on effects of constituents and their

microstructural arrangements on properties. In recent years

the seemingly abundant computer power has motivated the

hierarchical approach with the hope of integrating materi-

als design and structural analysis.

Our objective here is to examine approaches for multi-

scale analysis of damage in composites. A first thought

would be to conduct damage initiation and progression

analysis as a part of the hierarchical multi-scale approach.

It turns out not to be that straightforward. The issues

confronting this approach will be discussed below, along

with the merits of an alternative approach.

Let us first take an overall view of the multi-scale

approach. Figure 8 illustrates, from left, an object of

structural integrity assessment within which a region of

potential criticality (failure) exists. This region (a

substructure) is analyzed to determine the loading on its

boundary. Next step is to examine how this loading

induces damage. This step requires analyzing heteroge-

neities (microstructure, generally), which govern initiation

of damage. Simple examples are debonding of fibers from

matrix and matrix cracking from broken fiber ends.

The analysis of local stress/strain fields to determine
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such micro-failures is commonly referred to as

micromechanics. The micromechanics itself could be

conducted at multiple scales. An example is fiber/matrix

debonding at the fiber diameter scale and coalescence of

the debond cracks at the scale of a representative number

of fibers.

In Fig. 8 the direction of the arrows indicates moving

from structural (macro) scale downwards to decreasing

length scales. Until the microstructural entities are explic-

itly included in an analysis, the regime of analysis is

characterized as ‘‘continuum’’, beyond which it is known

as micromechanics. In the context of damage the contin-

uum regime is called Continuum Damage Mechanics

(CDM), while the micromechanics is typically not given an

additional characterization (except, perhaps, occasionally

as micro-damage mechanics, see [2]). Historically, the

fields of CDM and micromechanics have developed inde-

pendently, CDM going back to Kachanov [4], while

micromechanics originated in various works, but its char-

acterization as a coherent field may be credited to

Budiansky [1], who defined it as ‘‘the mechanics of very

small things’’. In recent years the upsurge of computational

mechanics has also boosted micromechanics, adding the

aspects of numerical simulation and length-scale based

characterizations such as ‘‘nanomechanics’’. The increas-

ing confidence in the power of computation has led to the

notion of the hierarchical approach, with the implicit

assumption that ‘‘basic’’ laws, when placed into a simu-

lation scheme, will lead to physically correct results. Thus,

once the microstructure, at any chosen level of length scale,

has been codified in a simulation scheme, the results of

computation will describe the behavior at the next higher

level, the assumption goes. In the context of damage

mechanics this may raise a few issues that we shall discuss

below.

The first issue in a hierarchical approach is the choice of

length scales. As discussed in Section ‘‘The Multi-Scale

Nature of Damage’’ above, the microstructural length

scales are relatively straightforward, and consequently

setting up a hierarchy of scales and procedures for bridging

between them can be accomplished relatively easily.

However, the microstructural configuration and driving

forces for damage initiation and progression determine the

length scales of damage. Thus, length scales of damage and

their hierarchy are not fixed but are subject to evolution. To

illustrate this, consider ply cracking in a laminate. In the

early stage, individual ply cracks initiate from debonding

of fibers, giving the damage length scale in terms of the

fiber diameter. When the ply cracks are fully-grown

through the ply thickness, the mechanism of interest is the

multiplication of cracks. At this stage, the damage length

scale is crack spacing, which in turn depends on the ply

thickness as well as the constraint to surface displacement

of the ply cracks. The two-stage behavior and the evolving

nature of damage complicate any hierarchical scheme for

prediction of response.

Another issue in a hierarchical approach is the multi-

plicity of damage modes. If more than one damage mode

operates at a time, and there is interaction between the

modes, then a hierarchy of length scales becomes ques-

tionable. Consider ply cracking in a commonly used, quasi-

isotropic [0/�45/90]s laminate in axial tension. Multiple

matrix cracking occurs in 90-plies, followed by the same in

plies of –45 and 45 orientations. The three ply cracking

modes progress interactively and at some stage concur-

rently. The length scales associated with the three damage

modes do not show hierarchy. Consequently, bridging the

scales by some averaging scheme becomes irrelevant.

Further complication to the hierarchical scale arrangement

is given by the interlaminar cracking that results from the

cracking in individual off-axis plies.

An alternative to the hierarchical approach is the syn-

ergistic damage mechanics (SDM) approach proposed by

this author [10]. Conceptually the approach combines the

strengths of CDM and micro-damage mechanics (MDM).

In CDM the material microstructure (e.g., distributed

fibers) and the distributed damage, which may be called

micro-damage structure, are treated as smeared-out fields.

This homogenization is illustrated in Fig. 9 as a two-step

process, where the material microstructure is viewed as

consisting of ‘‘stationary’’ entities (e.g., fibers and plies)

and the micro-damage structure is considered as a family of

evolving entities (e.g., cracks and voids). A set of response

functions are expressed in terms of the field variables

(stress, strain, temperature) and internal variables, which

represent the smeared-out field of evolving damage enti-

ties. The internal variables, although being field quantities,

actually have an RVE associated with them at each mate-

rial point. Strictly speaking, there is another RVE associ-

ated with the stationary microstructure, but it is customary

in continuum treatments to bypass it by requiring that the

quantities such as the elastic moduli of virgin material be

measured at a scale much larger than the scale of the

individual stationary microstructure entities. There is a

tendency to do that for the RVE associated with damage as

well, as evidenced in finite element based analyses where

Structure Substructure RVE Unit cell

CDM

Micromechanics

Fig. 8 A multi-scale approach starting from the structural scale,

moving down to lower scales
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reduced (damage induced) properties are assigned at nodal

points. The reduced properties are meaningful only at the

RVE scale, which depends on the length scales of damage

discussed above.

To illustrate the structure of SDM let us consider the

Helmholz free energy function for isothermal, mechanical

response, as

/ ¼ f ðe;DÞ ð17Þ

where the strain tensor � and damage variable D, generally

also a tensor, are independent variables representing the

material state. The variable D is viewed as an internal

variable, representing some measure of the collective

presence of damage entities in an RVE at the considered

point where the material response is sought. In Fig. 9 the

RVE at a point is shown as a finite-sized cube of material

containing a representative sample of damage entities.

The internal state (damage) in a general case may con-

tain multiple modes, such as the ply cracking modes in a

[0/�45/90]s laminate. In the conventional CDM approach

the response function R, and any function derived from it,

is expressed in terms of D, which is formulated to represent

a measure of the intensity of damage. Examples of such

measures are void volume fraction and crack number

density. Such ‘‘passive’’ measures end the CDM at the

RVE level, i.e., the role of CDM gets limited to generating

constitutive relationships at the RVE (meso) level that are

then used for analyzing structural (macro) response. In the

SDM approach we proceed down from the RVE level to

one or more micro-levels as warranted by the situation at

hand. This is accomplished by developing a characteriza-

tion of damage entities that is ‘‘active’’ in the sense that the

presence of damage entities is accounted for by including

the ‘‘influence’’ of damage entities. In contrast, the passive

characterization is limited to only accounting for the

‘‘presence’’ of damage entities by measures such as crack

number density, as noted above. The characterization of

influence is accomplished by assigning a two-vector

representation to a damage entity, as illustrated in Fig. 9.

The vector a carries the influence through its magnitude

and direction. The magnitude of the vector represents a

measure of how much the damage entity is able to affect its

surroundings, while the direction of the vector indicates the

orientation in which this effect acts. For instance, if we are

concerned about deformational response of a composite,

then clearly the surface of a given damage entity must

conduct a displacement in order to affect this response.

Imagine for instance a transverse crack in 90-plies of a

[0/�45/90]s laminate. The degree to which this crack opens

under an imposed axial load increment will determine how

much the axial elastic modulus of the composite will reduce.

If the axial stiffness of the sublaminate [0/�45] is high, then

the crack opening displacement will be low, and conse-

quently, the modulus reduction will be small. In a passive

damage characterization, where only the crack number

density enters, no distinction can be made between the

presence of cracks in different constraining environments.

In the SDM approach the constraint to the damage entity

influence is represented in a constraint parameter, such as a
in Eq. (4) for a fiber-bridged matrix crack. The determina-

tion of the constraint parameter, and generally any influence

function, is accomplished by a micromechanics analysis at

levels warranted by the length scales of damage.

The SDM approach has been illustrated in Varna et al.

[11] for the elastic response of [�h/904]s laminates and in

Varna et al. [12] for the linear viscoelastic response of

cross ply laminates of different 0/90 ply mix. In each case

the transverse cracking in 90-plies was considered as the

damage mode subjected to different constraints. Thus in the

[�h/904]s laminates h is varied to vary the constraint, while

no cracking is considered in the �h plies. The objective in

both the works just cited was to demonstrate SDM for the

case of one damage mode with varying constraint and

P
n

a

Stationary microstructure

Evolving
microstructure

Homogenization of stationary microstructure

RVE

Homogenized continuum
with damage

Damage entity

Fig. 9 Illustration of the two-

step homogenization process for

composites with damage
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varying meso scale (RVE size). This addresses the first of

the two issues in hierarchical multi-scale modeling dis-

cussed above. This author and his associates in ongoing

work are treating the other issue of multiple damage

modes. The main ideas in dealing with the first issue are

discussed next.

Let us consider the elastic response of [�h/904]s lami-

nates. At a damage state where multiple transverse cracks

of average spacing s exist, an elasticity response function

(modulus), derived from the free energy function, Eq. (17),

can be expressed as Talreja [8]

R
R0

¼ 1� j
tc
s

f1f2 ð18Þ

where R0 is the initial (undamaged) value of the response,

tc is the thickness of the cracked plies, j is the constraint

parameter and f1 and f2 are normalized functions of the

laminate geometry (ratio of cracked to uncracked plies) and

ply properties, respectively. The expression in Eq. (18)

results from a linearized theory; more terms of higher order

in tc
s will appear in a higher order theory. In Varna et al.

[11] it was shown based on MDM analysis that the

constraint parameter j could be approximated as a function

of h by a polynomial function of ply properties and ratio of

thicknesses of cracked and uncracked (constraining) plies.

Thus with input from MDM the CDM framework could be

applied to the class of [�h/904]s laminates. Note that in the

conventional CDM framework the response function R

must be calculated separately for each h value.

In the case of linear viscoelastic response, R, j, f1 and f2,

are all functions of time. In Varna et al. [12] it was shown

that the functions f1 and f2 are normalized functions of

laminate geometry and relaxation moduli of undamaged

plies, respectively, while the time variation of j was found

by parametric studies of [0/90n]s to be given by a

polynomial function of the ratio of axial relaxation moduli

of the cracked plies to that of the uncracked plies. Once

again, an MDM analysis allowed predicting viscoelastic

response (for a fixed crack density) for a class of com-

posites with a CDM framework without experimentally

determining material constants for each laminate configu-

ration.

Although at this point no results are available for the

case of multi-mode damage using SDM (work is ongoing)

it is fair to state that a purely MDM approach or a con-

ventional CDM framework will not provide results without

excessive computation (for MDM) or tedious experiments

(for CDM).

The ‘‘Big Picture’’

In composites damage modeling, and in engineering

research generally, it is important to have the ultimate

goal in mind to develop the right strategy and to be clear

about the context. For us the goal is to assess integrity

and durability of composite structures. This goal is not

new; it has been in sight for most of us involved in

materials modeling. Figure 10 shows the ‘‘big picture’’ in

which structural integrity and durability assessment is

embedded. The starting place in the iterative process

illustrated in the figure is manufacturing. One selects a

process, e.g., liquid compression molding and quantifies

its process parameters, which along with other manufac-

turing details involved, such as machining and assembly,

determine the material state in the component manufac-

tured. The material state is characterized by a set of

properties (e.g., elastic moduli, strength and fracture

toughness). These properties undergo evolution in the

service environment due to phenomena such as fatigue,

creep/viscoelasticity and aging. The performance evalua-

tion for the expected component life involves assessment

of structural integrity and durability. Finally, a trade-off

study of cost against performance is conducted to assess

the cost-effectiveness. Most cost drivers lie in the man-

ufacturing process, whose parameter variation allows

moving toward the optimal design.

Cost Analysis
Cost/Performance, Trade-offs

Manufacturing 
Process Modeling & Simulation 
Tooling, Machining, Assembly

Materials Characterization
Stiffness, Strength, Toughness

Performance Evaluation
Durability, Damage Tolerance

Fig. 10 The ‘‘Big Picture’’

considerations for cost-effective

design of composite structures
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Returning to the structural integrity and durability

assessment, the role of materials modeling for composites

is described in Fig. 11. Here the starting place is struc-

tural stress analysis of a given component, often by a

finite element code. The input to this is the loading

environment along with a deformational model, which is

taken to be that of the initial material state (as produced

by the manufacturing process). In most cases prior

experience guides in identifying critical sites in the

component that are prone to failure. The local stress states

in those sites determine the initiation and evolution of

damage, also called sub-critical failure. The mechanisms

of damage depend additionally on the ‘‘microstructure’’,

i.e., the fiber architecture, ply configuration, fiber/matrix

interface, etc. In the discussion above we have illustrated

two cases of damage in two widely different micro-

structure scenarios. Along with this we have also dis-

cussed the damage mechanics approaches, CDM and

MDM, as well as the hierarchical versus SDM strategies.

The outputs of these modeling efforts are either defor-

mational changes, expressed as stiffness-damage rela-

tionships, or strength (failure criticality), or both. The

stiffness change result also provides incremental input to

the stress analysis, updating the deformational model. The

final goal of life prediction (durability) can be reached

either by a stiffness criterion or a strength criterion,

depending on the performance requirement.

The multi-scale modeling approach discussed here has

been focused on the deformational response. Other con-

siderations are needed for treating the local-to-global fail-

ure. The length scale issues are substantially different for

failure than for deformational response. Discussion of these

calls for a separate, focused treatment reserved for a future

work.

Future direction

Referring to Fig. 10 again, the material state resulting from

the manufacturing process depends on the defects inherent

in the process, in addition to the constituents and their mix

in the composite. Any practical manufacturing process

produces a variety of defects, such as misaligned fibers,

broken fibers, irregularly distributed fibers, resin rich areas,

voids and interfacial disbonds. In most modeling efforts the

composite microstructure is idealized to be defect free or at

best assumed to have simplified defect geometry and dis-

tribution. The field known as ‘‘effects of defects’’ has been

active since the 1970s when regularly distributed defects

embedded in homogenized composites were studied. The

more recent advances in morphological characterization

based on stereological tools and stochastic methods have so

far been only applied to properties of heterogeneous media

[5, 6]. The future direction for advancement in damage

mechanics lies in incorporation of as-manufactured defects

in damage models. This is far from a straightforward

proposition. Further discussion follows.

The hierarchical multi-scale modeling faces major dif-

ficulties in analysis of defects for damage initiation and

growth, as well as for prediction of the consequent global

structural response. Not only is the hierarchy of length

scales of damage dubious, as discussed above, the micro-

structural length scales are rendered complex by the defect

morphology. For instance in describing microstructure of a

unidirectional composite, misalignment of fibers adds

additional descriptors to the two parameters––fiber diam-

eter and inter-fiber spacing––needed for the perfectly

aligned case, assuming uniform distribution of fibers. The

implication on damage initiation and growth makes the

situation worse.

Stress Analysis 
Stress/strain/Temp at

Critical Sites

Initial 
Deformation

Models

Service 
Loading

Damage Mechanisms 
Matrix Cracking, Delamination,

Viscoelasticity/aging, etc.

Damage Mechanics
Micro/Meso/Macro Models

Stiffness
Degradation

Strength
Degradation

Life Prediction

Fig. 11 Integrity and durability

assessment procedure for

composite structures
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In an SDM approach not all microstructural details are

necessary, only those motivated by the smeared-out higher

scale. For instance the surface displacement capacity of

damage entities within the RVE needed for describing the

meso-scale response can be calculated by considering only

those details of microstructure that are expected to influ-

ence that quantity. Thus with discrimination and judicious

choices the modeling can be simplified without sacrificing

essential physical effects. One may ask why starting at a

lower scale and proceeding upwards could not achieve the

same advantage. The problem with that would be not

knowing which details of the microstructure would be

important for the response until the analysis is done.

Approaching from the structural level helps clarify the

determining factors for the needed response.

Concluding remarks

Multi-scale modeling is of great interest today largely

because of the availability of computational power as well

as observation and imaging techniques. However, there is a

risk of losing tractability of damage and conducting inef-

fective analyses if strategies and approaches are not suffi-

ciently scrutinized. In this paper the length scale issues

have been addressed by considering two widely different

damage scenarios. The problems associated with identify-

ing a hierarchy of length scales in the presence of damage

suggest taking an approach where the continuum modeling

of damage and micro-damage modeling are combined in a

synergistic manner.

A methodology for assessing structural integrity and

durability of components manufactured by practical meth-

ods needs incorporation of defects in a multi-scale damage

analysis. Future work should move in this direction.
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